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Abstract 

We show that “all” cosymplectic manifolds can be obtained by reduction from a universal cosym- 
plectic manifold [w x T*(RN x Tk). We also prove a corresponding equivariant version. 
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1. Introduction 

It is by now a generally accepted statement that symplectic manifolds are the natural 
geometric setting for (time independent) classical mechanics. In [GTl] it was shown that 
the local model of a symplectic manifold, i.e., (W2N with its canonical symplectic form d@, 
also serves as a universal model in the sense that “all” symplectic manifolds can be obtained 
from an R2N by reduct’ ion (in a precise sense). On the other hand, cosymplectic manifolds 
are the natural geometric setting for time-dependent mechanics [LR,A], or, said differently, 
cosymplectic manifolds are a natural odd-dimensional counterpart to symplectic manifolds. 
Since the local model for a cosymplectic manifold is [W2nf’ with the a-form d&n and the 
1 -form ds, it is quite natural to ask whether this is at the same time a universal model. Unlike 
the case of symplectic manifolds, the answer is negative: a universal model for cosymplectic 
manifolds is slightly more complicated. 
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Let (M, St, n) be a cosymplectic manifold with Reeb vector field R and let C be a 
submanifold of M. Suppose furthermore that R is tangent to C, that the characteristic 
distribution .F EZ ker Q 1~ fl ker n]c has constant rank, and that the canonical projection x : 
C -+ C/3 3 A4, is a fibration. With these hypotheses Mr inherits a canonical cosymplectic 
structure, and we will say that M,. is the reduction of M by C. The aim of this paper is to 
show that there exists a universal cosymplectic manifold in the sense that “all” cosymplectic 
manifolds may be obtained from it by reduction. More precisely, our main theorem is: 

Theorem 3.1. Let (M, Sz, n) be a cosymplectic manifold offinite type. Then there exist 
integers N and k and real numbers ~1, . . . , pk that are independent over Q such that M 
is the reduction of the cosymplectic mantfold (MU, 52,) q,) by some submantfold C c MU, 
where 

k 

IV&, = F-8 x T*(Tk x rWN), 

with (Pi the angle coordinates on the torus Tk, s the canonical coordinate in R, and k = 
rank(n). 

Now suppose that the cosymplectic manifold Mr is obtained by reduction from the cosym- 
plectic manifold M by the submanifold C c M. If a Lie group G acts cosymplectically on 
(M, Q, r]) and if C is invariant under G, the action of G on M induces a cosymplectic action 
of G on M,. . In such a case we say that Mr is obtained as the equivariant reduction of A4 by 
C. This happens, for instance, in the context of cosymplectic reduction of a cosymplectic 
manifold with symmetry (see [A,CLL,LSJ). Theorem 3.1 can be improved to incorporate 
(compact) group actions as given in: 

Theorem 4.2. Let G be a Lie group acting cosymplectically on a connected cosymplectic 
mantfold (M, 52, r]), where M is ofjinite type. If the closed 2-form Q admits a moment 
map, then (M, Q, I], G) can be obtained as the equivariant reduction of some cosymplectic 
man&old (MU, Q,, nU) as in Theorem 3.1 equipped with a (cosymplectic) action of G, 
which is trivial on R and which is the symplectic lif of an action on Tk x RN, the latter 
action decomposing as a representation of G on Tk and an orthogonal representation of G 
on RN. 

2. Reduction of a cosymplectic manifold 

Before we give the formal definition of cosymplectic reduction used in this paper, we 
briefly recall the definition and some important properties of cosymplectic manifolds. A 
cosytnplecfic manifold is a triple (M, D, n) consisting of a smooth (2n + 1)-dimensional 
manifold M, endowed with a closed 2-form Sz and a closed l-form n such that 0” A g is 
nowhere zero (see [LM,LR]). If we consider the vector bundle morphism 

b : TM + T’M, X E T,M I-+ b(X) = t(X)Qx + (t(X)n,)nx> 



M.de L&n, G.M. Tuynman/Joumal of Geometry and Physics 20 (1996) 77-86 19 

then the condition that P A q is nowhere zero is equivalent to the condition that b is a vector 
bundle isomorphism. One denotes by R = b-’ (17) the Reeb vector field, which means that 
it is defined by 

r(R)R = 0 and [(R)n = 1. 

Around any point x E M there exist local canonical coordinates (@, pa, u), a = 1, . , n. 
called Darboux coordinates, such that 

In such coordinates the Reeb vector field is given as R = a,. 
Two cosymplectic manifolds (MI, L?, , ~1) and (M2, &, 172) are said to be isomorphic 

if there exists a diffeomorphism @ : Ml -+ M2 such that 

Now let (M, R, r]) be a cosymplectic manifold and let C be a submanifold. By Q (C and 
nlc we denote the restrictions of L2 and n to C, respectively. We furthermore assume that 
the following three conditions are satisfied: 
- R is tangent to C; 
- the characteristic distribution F = ker Q (C f’ ker v(c has constant rank on C (hence it 

is a foliation on C); 
_ the space of leaves M, = C/F has a structure of manifold and the canonical projection 

JC : C + M, is a fibration. 
With these hypotheses, it is not hard to show that there exist unique closed forms Q, and 
nr on M, such that: 
_ 7r*f12, = SzJc and rr*q, = nlc; 
- (M,, Q,, ql) is a cosymplectic manifold; 
_ n,(Rlc) = R,., where Rlc is the restriction of R to C and R, the Reeb vector field of 

the cosymplectic manifold M,. 
In these circumstances we will say that M, is the reduction of M by C. 

Remark 2.1. In the tangent space of a cosymplectic manifold M we can define a cosym- 
plectic orthogonal by 

E c T,M ===+ El = (X E T,M ( q(X) = 0, (t(X,sZ)(, = 0). 

With this we say that a submanifold C c M is coisotropic if: (i) R is tangent to C; and (ii) 
TC’ c TC. Since the dimension of EL only depends on the dimension of E, it follows 
easily that if C is coisotropic, then 7 = TC fl TC’ has constant dimension. 

The notion of a coisotropic submanifold C of a cosymplectic manifold M can be related 
to the usual notion of a coisotropic submanifold of a symplectic manifold in the following 
way. If (M, 0,~) is cosymplectic, then the manifold M x R equipped with the closed 
2-form w = Sz + n A dt is a symplectic manifold (here t is the coordinate on the extra rW>. 
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One then can prove that C c M is coisotropic in the cosymplectic sense if and only if 
T(C x Iw)’ c TC x {O}, where one should use the symplectic orthogonal to compute 
T(C x rW>‘. It follows that C x R is a special kind of coisotropic submanifold of M x Iw 
(in the symplectic sense). 

Having defined what we mean by (cosymplectic) reduction, we now proceed to collect 
some properties of this kind of reduction. 

Proposition 2.2. Suppose that a cosymplectic manifold M2 is the reduction of a cosymplec- 
tic mantfold Ml by a submantfold Cl c MI and that Ml is the reduction of a cosymplectic 
mantfold MO by the submantfold CO c MO. Then M2 is the reduction of MO by the subman- 
tfold C2 = JC~‘(C~), where Xi : Ci -+ Mi+l is the canonicalprojection, i = 0, 1. 

Proof A direct computation. ??

Definition 2.3. For any l-form 7 on a manifold M we define rank(n) by 

rank(n) = dim@. Periods(q)), 

where Periods(q) = { sz n 1 z a l-chain in M } c R. Note that for manifolds of finite type 
(meaning that H4 (M) is finitely generated for all q E N, a condition verified by all reason- 
able manifolds) the Q-dimension of Q . Periods(n) is always finite. 

Proposition 2.4. Let Mr be the reduction of M by C, and let rank(n) = k. Then 
rank(q) 5 k. 

Proof We have rank(qlc) 5 rank(q) because a chain in C is necessarily a chain in M. If 
n : C + Mr is the canonical projection, then a chain in C projects onto a chain in Mr and 
any chain in Mr is the projection of a chain in C (because the fibres of n are connected). 
Thus rank(nlc) = rank(r],). Cl 

Corollary 2.5. lf n is exact then nr is also exact. 

Proof n is exact if and only if Periods(n) = (01, i.e., if and only if rank(n) = 0. Cl 

Proposition 2.6. Let Mr be the reduction of M by C. If the Reeb vectorfield R is complete 
and tf C is closed in M, then 72, is complete. 

Proof If C is closed, the restriction of R to C is a complete vector field on C which projects 
onto the reduced Reeb vector field R,. Hence R, is complete. 0 

Remark 2.7. The local model for cosymplectic manifolds is given by the Darboux coordi- 
nates as lRZnfl. In this local model the l-form is exact, and the Reeb vector field is complete. 
Since for a general cosymplectic manifold the l-form need not be exact, Corollary 2.5 shows 
that the local model cannot be a general universal model. Moreover, since the Reeb vector 
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field of a general cosymplectic manifold need not be complete, it follows from Proposition 
2.6 that we cannot always take the submanifold C to be closed. This is in sharp contrast 
with the symplectic case, in which the local model IX*” is at the same time the universal 
model, and in which reduction can always be done by a closed submanifold. 

3. The main theorem 

Theorem 3.1. Let (M, Q, q) be a cosymplectic manifold of jnite type. Then there exist 
integers N and k and real numbers p 1, . . . , ,& that are independent over Q such that M 
is the reduction of the cosymplectic manifold (MU, Cl,, vu) by some submanifold C c M,, 
where 

MU = R x T*(Tk x RN), qu = ds + 
i=l 

with cpi the angle coordinates on the torus Tk, s the canonical coordinate in R, and k = 
rank(n). 

ProojI The proof will proceed in four steps. In the first step we “concentrate” the l-form 
on a torus; in the second step we transform the 2-form into a part of a symplectic form; in 
the third step we change coordinates to get a better view; finally in the fourth step we obtain 
the model as described in the theorem. 

Step 1: The condition that M is of finite type implies in particular that the 1 -form q can 
be written as a finite linear combination of integral l-forms: 

k 

rl=VO+C CLi Vi, 
i=l 

where nu is exact and where the vi are non-zero integral classes (note that if 17 is exact, 
k = 0, and if k > 0 then we can absorb no in one of the vi ; the given presentation allows us 
to present both cases at the same time). If we take the number of integral classes k-minimal, 
the coefficients pi must be independent over Q. In that case it follows immediately that 
rank(q) = k. 

Now recall that St is an Eilenberg-MacLane space (K(Z, 1) = S’). Thus, from the 
Eilenberg Classification theorem [WI, the set of homotopy classes of mappings from M into 
S’ E T is in one-to-one correspondence with the group H ’ (M, Z). Since [vi ] E H ’ (M, Z), 
there exist smooth maps fi : M + T such that Ai* = vi. 

With this preparation we define (Ml, 521, ~1) by: 

Ml = M x T*Tk 2 (M x Rk) x Tk, 

k 

DI = Q + C pi dti A (dpi - vi), 
i=l 
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where (pi) are the usual coordinates (modulo 27~) in the torus Tk and ti the coordinates in 
the corresponding fibres [Wk. It is easy to show that dS2t = 0, that dnt = 0, and that 

~(X)Ql + (~(WTIl)~ r1 = 0 * x = 0. 

We conclude that (Ml, i21, ~1) is a cosymplectic manifold. Its Reeb vector field is 

where R denotes the Reeb vector field of (M, Q, n). 
We now define the submanifold Cl = ((x, Ti, fi (x))) c Ml, which is the graph of the 

smooth map F : A4 x Rk + Tk defined as F(x, ti) = (fi(x)). Hence Cl is diffeomorphic 
to M x [Wk. A direct computation shows that 

.Ft = ker L?t (c, fl ker nt Jc, = (a/ati). 

It follows that (M,, a,, n,.), the cosymplectic reduction of MI by Cl, is isomorphic to 

(MT Q, rl). 
Step 2: We define 

Mz=RxT*M,, Lb =deM, +Q,, 172=ds+ql. 

A direct computation shows that (M2, Q2, 172) is a cosymplectic manifold whose Reeb 
vector field is R2 = a,, where s denotes the canonical coordinate on [w. We denote by Dt 
the domain of the flow of Rt, which is an open subset of Iw x Ml. We then define the 
submanifold C2 of M2 by 

C2 = {(s, X, 0,) E [w x T*M, ) (s, x) E 01) 

Roughly speaking C2 is the zero section of T* MI above DI , and as such C2 is diffeomorphic 
to D1. Using this identification we obtain 

.F2 = ker s22jcz n ker q2(cZ = (Rt - a/as). 

IftheflowofRt isgivenbyx H x(t),theflowofRt-&isgivenby(s,x) H (s-t,x(t)). 

It follows that each leaf of F has a unique point with s = 0. Hence the quotient Q/F2 may 
be identified with Ml 2’ [O) x Ml c D1 2 C2. An elementary computation then finishes 
the proof that (MI , L?l, 71) is the cosymplectic reduction of M2 by C2. 

Step 3: Using the notation introduced in steps 1 and 2, we can define a l-form (Y on Ml 

by 

CY= c Fiti(dVi - Vi). 
i=l 

Moreover, since ~0 is exact, there exists a smooth function fc : Ml -+ R such that no = dfu. 
With these ingredients, we can write the cosymplectic structure on M2 as: 

&=deM, +da!+S2, r/2 = ds + dfo + 2 Pi dpi. 
i=l 
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We now introduce the diffeomorphism g : A42 + M2 defined by 

g(s. I%) = (s - fo(x>, /% - a,), 

where /IX E T,* MI denotes an arbitrary point in the cotangent bundle of Ml. In other words, 
g is a translation in [w over fu(x) and a translation in the fibres of T*Ml over the l-form (Y. 
It is not hard to show that the pull backs Q3 = g*Q and r73 = g*q2 are given by: 

k 

)13 = ds + c pi dqi. 
i=l 

It follows that the cosymplectic manifold (M2, L?2, r/2) is isomorphic (via g) to the cosym- 
plectic manifold (M3 = M2, L23, 713). 

Step 4: Reordering the different factors in the definition of (M3, as, 773), we can write 
these as: 

M3 = I$ x T*Tk x T*(M x Rk), 

523 = d+ + d6MxRk + fl, 

~3 =ds + i: Wi dqi. 
i=l 

We now recall that any symplectic manifold of finite type can be obtained by reduction (in 
the symplectic sense) from a universal model (T*R N, dOiWN) (see [GTl]). We apply this to 
the manifold T* (M x Rk) with the symplectic form w = d6,Xnk + a. There thus exists 
an N E N and a submanifold C of T*RN such that the quotient C/ ker W(C is isomorphic 
to the symplectic manifold T*(M x Rk), where W(C denotes (as usual) the restriction of 
the canonical symplectic form d@ on T*RN to C. 

With this in mind we define M,, = R x T*Tk x T*[WN, 0, = dOTkXIWN. and Q, = 

ds + Cf=t pi CP’ d l. It follows easily that the cosymplectic manifold (M3, L’3, ~3) is the 
reduction of Mu by the submanifold C, = lK! x T*Tk x C. We complete the proof of the 
theorem by concatenating the four steps; this is done by applying the chain rule proved in 
Proposition 2.2. 0 

Remark 3.2. The proof that all symplectic manifolds can be obtained as a reduction from 
some canonical lR2N decomposes into three steps. Comparing these steps with the four 
steps in the proof of Theorem 3.1, one can see that the first step in the symplectic case 
corresponds to the second step above, and that the second and third steps in the symplectic 
case correspond to the fourth step above. 

Actually, this comparison allows us to be more precise about the fourth step above: (i) 
the submanifold C can be chosen to be coisotropic (in the symplectic sense); and (ii) the 
reduction from lR2N to T* (M x Rk) can be realized as a Marsden-Weinstein reduction by 
means of a connected abelian group. 
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4. The equivariant case 

Let (M, Q, q) be a cosymplectic manifold and let G be a Lie group acting smoothly on 
M. We will say that G acts cosymplectically if the action preserves both 52 and q. Next, 
suppose that the cosymplectic manifold (M,, 52,. , q) is obtained as the reduction of M by 
C c M. If the Lie group G acts cosymplectically on M and if C is invariant under this 
action, then there is a naturally induced action of G on M,. and, moreover, this induced 
action is cosymplectic. In such a case we will say that (MT, Q,, Q., G) is the equivariant 
reduction of (M, Q, q, G) by C. 

Definition 4.1. Let a Lie group G act smoothly on a manifold M, and let Q be a closed 
G-invariant 2-form on M. If g is the Lie algebra of G, then for any 6 E 9 we denote by 6~ the 
associated fundamental vector field on M. Since D is G-invariant, the l-forms l(t~)Q are 
closed. We will say that the G-action admits a moment map if all the closed l-forms r(t~)Q 
are exact. This generalizes the usual notion of a moment map for symplectic manifolds. 

Theorem 4.2. Let G be a compact connected Lie group acting cosymplectically on a con- 
nected cosymplectic manifold (M, 52, q), where M is ofjnite type. If the closed 2-form Sz 
admits a moment map, then (M, 52, q, G) can be obtained as the equivariant reduction of 
some cosymplectic manifold (Mu, 52, , Q,) as in Theorem 3.1 equipped with a (cosymplectic) 
action of G, which is trivial on R and which is the symplectic lift of an action on Tk x RN, the 
latter action decomposing as a representation of G on Tk and an orthogonal representation 
of G on RN. 

ProoJ: We follow the steps of the proof of Theorem 3.1. By Lemma 4.3 we may assume 
that the integral l-forms vi are G-invariant, Applying Lemma 4.4 we find an action of G 
on Tk (induced by a representation p : G -+ Tk) such that the maps fi are G-equivariant. 
We then equip MI = M x Rk x Tk with a G-action by using the given action on M, the 
trivial action on [Wk and the just constructed action on Tk. It then follows easily that G 
acts cosymplectically on (Ml, f21, r]l), that C is G-invariant, and that M is the equivariant 
reduction of Ml. 

For the next step we define a G-action on M2 = R x T* Ml by taking the trivial action on 
[w and the canonical lift (from Ml) to the cotangent bundle T*Ml. Since such a lifted action 
always preserves the canonical symplectic form de,+,, , it follows that G acts cosymplectically 
on (M2, &, ~2). Since the Reeb vector field on MI is G-invariant (it is defined in terms 
of Qt and VI), it follows that the domain D is G-invariant, and thus C2 is G-invariant. It 
follows easily that Ml is the equivariant reduction of MT. 

For step three it suffices to remark that (Y is G-invariant and that we may assume that fo is 
G-invariant (by an averaging argument). It follows that the isomorphism g is G-equivariant. 

Finally, for step four, we note that the condition that 52 admits a moment map implies 
that we can apply the result of [GT2], i.e., there exists an orthogonal action of G on iJ@” 
such that the reduction (in the symplectic sense) from R2N to T* (M x Rk) is an equivariant 
reduction. We thus define a G-action on Mu = R x T*Tk x T*RN as being trivial on [w, the 



M.de L&n, GM. Tuynman/Journal of Geometr?, and Physics 20 (19961 77-86 85 

lifted action of G on Tk to the cotangent bundle T*Tk (which is trivial on the fibres!), and 
the lifted orthogonal action of G on T*IWN . It follows immediately that A43 is the equivariant 
reduction of M, 

The proof is complete when we note that the chain rule of Proposition 2.2 is also valid 
in the equivariant setting. n 

Lemma 4.3. Let a compact and connected Lie group G act on a manifold M, and let the 
k-form n represent an integral cohomology class on M. Then the average ij = s, g*n dg 
represents the same integral class, provided dg is the invariant Haar measure of’ total 
volume 1. 

Pro06 For any k-cycle z we have Jz g*q = JKCz, q = n(g) E if. Since G is connected and 

Z discrete, n(g) must be constant. It follows that for any k-cycle z we have 1: i = /: 17, and 
thus, by De Rham duality, rj and 17 represent the same cohomology class. •1 

Lemma 4.4. Let G be a Lie group acting smoothly on a connected manifold M, and let 
f : M -+ T be a smooth map. If the l-form n = f *dq is G-invariant, then there crists 
a representation p of G on T such that f (gm) = p(g) f(m). i.e., f is equivariant if‘cve 
equip T with the G-action dejined by g(z) = p(g) z. 

ProoJ: Denoting as before the Lie algebra of G by n, G-invariance of n implies that 0 = 
C([M)~ = d(l([M)q) for all 6 E B. Since M is connected, this implies that Lo must be 
constant, i.e.. there exists a map r : g + R such that 

Interpreting [w as the (abelian) Lie algebra of the Lie group T, it is not hard to show that the 
map r is a Lie algebra homomorphism. Thus there exists a (unique) Lie group morphism 
5 : G + T whose derivative at the identity equals r (where G denotes the simply connected 
cover of G). 

We now introduce two maps x, $ : 6 x M + M defined as: 

xG3 ml = f (x(g)m), @(!?, m) = P(k) . f(m), 

where rr : G --f G denotes the covering map. Since for all m E M the maps x and J!J 
coincide at g = id and have the same derivative at an arbitrary point g, we deduce that 
x = $. This means that we have the equality 

f (Ir(g)m) = p(g). fi(m) Vi E G, Vm E M. 

From this and the fact that T is a group, it follows immediately that there exists a (unique) 
representation p : G + T such that c = p o rr. This is the sought for p. 0 
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